The Application of Photochemical Tissue Bonding (PTB) for Large Gap Peripheral Nerve Injury

Neil Fairbairn, Joanna Ng-Glazier, Amanda Meppelink, Mark A. Randolph, CDR Mark E. Fleming, MC, USN; Lcdr Ian L. Valerio, MC, USN; Robert W. Redmond and Jonathan Winograd

Aims

1. Determine mechanical properties, seal strength and resistance to biodegradation of candidate biological nerve wraps.
2. Determine efficacy of regeneration in a rat model of large deficit injury as a function of nerve wrap materials and method.

Hypothesis

Photochemical sealing of nerve graft coaptation sites using a durable, biocompatible nerve wrap will create a sutureless water tight seal, leading to superior outcomes compared to conventional methods.

Experimental Approach

Aim 1

• Candidate nerve wrap biomaterials:
 • Processed human amnion (HAM)
 • Swine intestinal submucosa (SIS)
 • Wraps crosslinked with EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/NHS (N-hydroxysuccinimide)) to improve durability.
 • Mechanical properties of nerve wrap materials determined by tensiometry.
 • Resistance to biodegradation measured using collagenase digestion and fluorescamine assay.
 • Nerve wraps stained with 0.1% Rose Bengal (RB, Fig 1) and bonded to ex-vivo rat sciatic nerves using 532 nm light (0.5 W/cm² for 5 mins per coaptation site).
 • Bond strength between nerve wrap and epineurium tested using tensiometer (Fig 2).

Results

• Tensile strength and Young’s modulus of HAM and SIS increases (stronger) significantly with EDC/NHS concentration.
• Photochemical bond strength of epineurium/wrap interface is maintained until 8mM EDC/2mM NHS.
• Crosslinking HAM and SIS wraps reduces rate of proteolytic degradation (Fig 3).
• 4mM/1mM EDC/NHS selected for in vivo study based on optimal bond strength and resistance to collagenase degradation of HAM and SIS in vitro.

Aim 2

• 110 male Lewis rats
• 1.5cm left sciatic nerve defect created and repaired with isograft (Fig 4).
• 11 treatment combinations (n=10)

Outcome assessment

• Greatest recovery of SFI and muscle mass retention occurred in xHAM+PTB group (Table 1 and 2).

Conclusions

• Photochemical bonding of biological nerve wraps increases strength and resistance to proteolytic degradation.
• Crosslinked amnion wraps photochemically sealed to neuroprosthesis sites of nerve grafts results in superior functional and histological outcomes compared with standard epineurial suture

Acknowledgements

Funding for these studies was provided by USAMRAA W81XWH-12-1-0511. We would like to thank HealthPoint Ltd. for the single layer SIS material (Oasis).

The views expressed in this article are those of the authors and do not reflect the official policy of the Department of Defense, or U.S. Government.